
How to write Cynical
software

Stability patterns and anti-patterns

dagi@goodata.com
https://twitter.com/_dagi

Monday 4 November 13

mailto:dagi@goodata.com
mailto:dagi@goodata.com
https://twitter.com/_dagi
https://twitter.com/_dagi

How to become cynical

• Eat your own dog food

• Strong feedback

• Pager duty (Engineer on duty)

• DevOps

Monday 4 November 13

How i’ve got there
No throw over the wall syndrom

Monday 4 November 13

LB

DB

3rd party
service

Frontend
service

Backend
service

Backend
service

Frontend
service

Backend
service

LB DB

DB

LB

Failure modes

Integration points

Integration points & Failure modes

Monday 4 November 13

- shift toward SOA, interconnected services, remote communication, 3rd party services
- how a crack may appear - failure mode
- integration point
- cracks are tightly coupled to integration points
- the way cracks appear and propagated across multiple layers and services
- Integration points may accelerate (chained reaction) or stop cracks
- Failure in one component increase the probability of failure in another component service
- Slow responses, endpoint unreachability
- High levels of complexity provide more directions for the cracks to propagate in.

Monday 4 November 13

Datacenter Rackspace

Datacenter AWS

User user; Projects projects;
try {
 projects = dao.getProjects(user, OFFSET, LIMIT).await(250, MS);
} catch (FutureTimeoutException e) {
 throw new AccountInfoUnavailableException();
}

for (Project project : projects) {
 Set<String> userPermissions = dao.getPermissions(project, user);
 if (userPermissions.contains(CAN_INIT_DATA)) {
 return new AccountInfo(Boolean.TRUE);
 }
}

Frontend server Backend server

C3

MySQL

1

2

MySQL

MySQL

Frontend server Backend server

C3

MySQL

MySQL

MySQL

Hanging SQL
connection

(90 s timeout)

Client
Hanging HTTP
connection (60s

timeout)

Hanging HTTP
worker thread

(120s)

Monday 4 November 13

Monday 4 November 13

A cynical software

 “Cynicism is merely the art of seeing things as
they are instead of as they ought to be” [1.]

Bad things happen

Lack of trust

Internal barriers

No intimacy

Resilience to impulse and stress
Monday 4 November 13

Explain the main attributes of cynical software

Stability patterns & antipatterns

Bulkheads

Test harness
Circuit breaker

Handshaking Fail fast
Timeouts

Steady state

Decoupling middleware

SLA inversion

Blocked threads

Slow responses

Attacks of self denial

Unbounded result set

Scaling effects

Unbalanced capacities

Monday 4 November 13

- the antipatterns will create, accelerate or multiply cracks in the system
- the patterns provide architecture and design guidance to reduce, eliminate, or mitigate the
effects of cracks in the system

Circuit breaker

Closed
Failure

Failure counter: 1Failure counter: 2

Failure
OpenTimeoutHalf-Open

Failure counter: 0
OpenFrontend

service
Backend
service

Monday 4 November 13

- mediator (decoupling, isolation), integration point wrapper
- fail fast

HTTP client

Bulkheads

Frontend
service

Backend
service A

Backend
service B

Backend
service C

Connections pool

Hiccup

Bulkheads

Hiccup

Monday 4 November 13

fat tails - sizing/capacity
isolation

Latency and Fault Tolerance for Distributed Systems

https://github.com/Netflix/Hystrix

Monday 4 November 13

- do not reinvent the wheel
- OSS, Java
- most of the patterns are implemented there (circuit breaker, bulkheads, fail fast)

https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix

public class CommandHelloWorld extends HystrixCommand<String> {

 private final String name;

 public CommandHelloWorld(String name) {
 super(HystrixCommandGroupKey.Factory.asKey("ExampleGroup"));
 this.name = name;
 }

 @Override
 protected String run() {
 // a real example would do work like a network call here
 return "Hello " + name + "!";
 }
}

String s = new CommandHelloWorld("World").execute();

Future<String> fs = new CommandHelloWorld("World").queue();

Monday 4 November 13

HystrixCommand = circuit breaker + bulkheads
Synchronous/Asynchronous usage
Async usage Future -> timeout

Testing
Focus on failures

Chaos monkey [2]

Simulate bad things

Monday 4 November 13

 - we do test but on "sligthly" different topology. It makes hard to reveal some kind of bugs
 - we mostly test optimistic cases
 - HTTP mock server (bad responses, slow responses, protocol violation...)
 - Longevity tests

https://github.com/Netflix/SimianArmy/wiki/Chaos-Home
https://github.com/Netflix/SimianArmy/wiki/Chaos-Home

Architecture

Adaptable design [3]

Conway’s law[4]

ROC [5]
Monday 4 November 13

- early decisions are hard to revert later (costs)
- Big Up Front Design doesn’t work prefer Adaptable design - Framework, Platform
- restartability (No restart the world), diagnostics (health checks), recovery mechanism -
circuit breaker, isolation/redundancy ()

http://en.wikipedia.org/wiki/Conway's_law
http://en.wikipedia.org/wiki/Conway's_law
http://en.wikipedia.org/wiki/Recovery-oriented_computing
http://en.wikipedia.org/wiki/Recovery-oriented_computing

Operations
Visibility

White box Black box

Instanemous behavior Read-Yellow-Green
dashboard

Events

Monday 4 November 13

- Health checks - do what a user does
- Automatic thread dump on service restart
- White box - logging, Black box - monitoring (JMX)
- Troubleshooting vs. Awareness

http://pragprog.com/book/mnee/release-it
Monday 4 November 13

http://pragprog.com/book/mnee/release-it
http://pragprog.com/book/mnee/release-it

Q&A

Monday 4 November 13

Blocked threads

Chain reactions
leads to

Integration
Points

found near

Slow responses
Cascading

failures

leads to

damage

leads to

mutual aggravation

Scalling
effects SLA inversion

Attacks of
Self-Denial

Unbalanced
Capabilities Unbounded

Result Sets

Users

leads to
leads to

leads to
exacerbates

Bulkheads

counters

counters

Handshakingcounters

Can avoid

Fail fast

counters

Steady state
avoids

results from
violating

Timeouts
counters

counters
Circuit Breaker

works with

prevents counters

Test Harness

finds problems in

Decoupling
Middleware

counters

reduces impact

countersmitigate

Monday 4 November 13

