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How to become cynical

• Eat your own dog food

• Strong feedback

• Pager duty (Engineer on duty)

• DevOps
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How i’ve got there
No throw over the wall syndrom
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- shift toward SOA, interconnected services, remote communication, 3rd party services
- how a crack may appear - failure mode
- integration point
- cracks are tightly coupled to integration points
- the way cracks appear and propagated across multiple layers and services
- Integration points may accelerate (chained reaction) or stop cracks
- Failure in one component increase the probability of failure in another component service
- Slow responses, endpoint unreachability
- High levels of complexity provide more directions for the cracks to propagate in. 
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Datacenter Rackspace

Datacenter AWS

User user; Projects projects;
try {
 projects = dao.getProjects(user, OFFSET, LIMIT).await(250, MS);
} catch (FutureTimeoutException e) {
 throw new AccountInfoUnavailableException();
}

for (Project project : projects) {
 Set<String> userPermissions = dao.getPermissions(project, user);
 if (userPermissions.contains(CAN_INIT_DATA)) {
  return new AccountInfo(Boolean.TRUE);
 }
}

Frontend server Backend server

C3

MySQL

1

2

MySQL

MySQL

Frontend server Backend server

C3

MySQL

MySQL

MySQL

Hanging SQL 
connection  

(90 s timeout)

Client
Hanging HTTP 
connection (60s 

timeout)

Hanging HTTP 
worker thread 

(120s)

Monday 4 November 13



Monday 4 November 13



A cynical software

 “Cynicism is merely the art of seeing things as 
they are instead of as they ought to be” [1.]

Bad things happen

Lack of trust

Internal barriers

No intimacy

Resilience to impulse and stress
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Explain the main attributes of cynical software



Stability patterns & antipatterns

Bulkheads

Test harness
Circuit breaker

Handshaking Fail fast
Timeouts

Steady state

Decoupling middleware

SLA inversion

Blocked threads

Slow responses

Attacks of self denial

Unbounded result set

Scaling effects

Unbalanced capacities
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- the antipatterns will create, accelerate or multiply cracks in the system
- the patterns provide architecture and design guidance to reduce, eliminate, or mitigate the 
effects of cracks in the system



Circuit breaker

Closed
Failure
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Failure
OpenTimeoutHalf-Open
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OpenFrontend 
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- mediator (decoupling, isolation), integration point wrapper
- fail fast



HTTP client

Bulkheads

Frontend 
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fat tails - sizing/capacity
isolation



Latency and Fault Tolerance for Distributed Systems

https://github.com/Netflix/Hystrix
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- do not reinvent the wheel
- OSS, Java
- most of the patterns are implemented there (circuit breaker, bulkheads, fail fast)

https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix


public class CommandHelloWorld extends HystrixCommand<String> {

    private final String name;

    public CommandHelloWorld(String name) {
        super(HystrixCommandGroupKey.Factory.asKey("ExampleGroup"));
        this.name = name;
    }

    @Override
    protected String run() {
        // a real example would do work like a network call here
        return "Hello " + name + "!";
    }
}

String s = new CommandHelloWorld("World").execute();

Future<String> fs = new CommandHelloWorld("World").queue();

Monday 4 November 13

HystrixCommand = circuit breaker + bulkheads
Synchronous/Asynchronous usage
Async usage Future -> timeout



Testing
Focus on failures

Chaos monkey [2]

Simulate bad things
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 - we do test but on "sligthly" different topology. It makes hard to reveal some kind of bugs
 - we mostly test optimistic cases
 - HTTP mock server (bad responses, slow responses, protocol violation...)
 - Longevity tests

https://github.com/Netflix/SimianArmy/wiki/Chaos-Home
https://github.com/Netflix/SimianArmy/wiki/Chaos-Home


Architecture

Adaptable design [3]

Conway’s law[4]

ROC [5]
Monday 4 November 13

- early decisions are hard to revert later (costs)
- Big Up Front Design doesn’t work prefer Adaptable design - Framework, Platform
- restartability (No restart the world), diagnostics (health checks), recovery mechanism - 
circuit breaker, isolation/redundancy ()

http://en.wikipedia.org/wiki/Conway's_law
http://en.wikipedia.org/wiki/Conway's_law
http://en.wikipedia.org/wiki/Recovery-oriented_computing
http://en.wikipedia.org/wiki/Recovery-oriented_computing


Operations
Visibility

White box Black box

Instanemous behavior Read-Yellow-Green 
dashboard

Events
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- Health checks - do what a user does
- Automatic thread dump on service restart
- White box - logging, Black box - monitoring (JMX)
- Troubleshooting vs. Awareness 



http://pragprog.com/book/mnee/release-it
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http://pragprog.com/book/mnee/release-it
http://pragprog.com/book/mnee/release-it


Q&A
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